Advanced glycosylated end products-mediated activation of polymorphonuclear neutrophils in diabetes mellitus and associated oxidative stress.
نویسندگان
چکیده
Two important consequences of hyperglycemia in diabetes are development of oxidative stress and formation of advanced glycation end products (AGE) which are known to be associated with diabetic complications. Relationship between AGE formation and development of oxidative stress (OS) is yet to be established. In the present study, the involvement of AGE in PMN-mediated ROS generation and the associated OS were investigated in type 2 diabetic mellitus (DM) patients. We assessed OS parameters (serum MDA, FRAP and GSH), PMN oxidative functions (respiratory burst and superoxide production) and total serum AGE in 90 subjects divided equally in three groups--control group, Group I consisting of type 2 diabetic patients without microvascular complications and Group II consisting of type 2 diabetic patients with microvascular complications. PMNs isolated from both groups (I and II) exhibited higher level of respiratory burst (RB) and produced increased amount of superoxide anion as compared to the controls. The increase was more pronounced in diabetes with complications, as compared to those without. Serum malondialdehyde (MDA) level was elevated, whereas glutathione (GSH) and ferric reducing ability of plasma (FRAP) levels were significantly reduced in diabetes as compared to the controls, suggesting the presence of oxidative stress in DM. A positive correlation between PMN oxidative function and OS parameters suggested the involvement of PMN in the development of OS in DM. Serum AGE level was also elevated in diabetic groups as compared to the controls. Further, the positive correlation between serum AGE level and PMN oxidative function suggested the involvement of AGE in increased RB and generation of reactive oxygen species (ROS) by resting diabetic PMN. The results of the study indicate that AGE-PMN interaction possibly upregulates NADPH oxidase, leading to enhanced ROS generation and thus contributes to the pathogenesis in diabetes.
منابع مشابه
Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملADVANCED GLYCATION END PRODUCTS AND ThiOBARBITURIC ACID REACTIVE SUBSTANCE IN GINGIVAL TISSUES OF DIABETIC AND NON-DIABETIC PATIENTS WITH CHRONIC PERIODONTITIS
ABSTRACT Background: Production of advanced glycation end products (AGEs) is directly linked to the level and duration of hyperglycemia in diabetic patients. Oxidative stress plays a major role in the pathogenesis of diabetes mellitus. Free radicals are f01med in diabetes by glucose oxidation, nonenzymatic glycation of proteins and subsequent oxidative degradation of glycated proteins. Thiobar...
متن کاملAssociation between Fluorescent Advanced Glycation End-Products and Vascular Complications in Type 2 Diabetic Patients
Objectives Diabetes is a major health problem associated with hyperglycemia and chronically increased oxidative stress and enhanced formation of advanced glycation end-products (AGEs). The aim of this study was to determine whether oxidative plasma biomarkers in diabetic patients could be evidenced and associated with vascular complications. Methods Oxidative stress biomarkers such as thiols,...
متن کاملReceptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress.
The receptor for advanced glycation end products (RAGE) may promote diabetic vascular and renal disease through the activation of intracellular signaling pathways that promote oxidative stress. Oxidative stress is a mediator of hyperglycemia-induced cell injury and a unifying theme for all mechanisms of diabetic complications, but there are few studies on the expression and potential contributi...
متن کاملHow hyperglycemia promotes atherosclerosis: molecular mechanisms
Both type I and type II diabetes are powerful and independent risk factors for coronary artery disease (CAD), stroke, and peripheral arterial disease. Atherosclerosis accounts for virtually 80% of all deaths among diabetic patients. Prolonged exposure to hyperglycemia is now recognized a major factor in the pathogenesis of atherosclerosis in diabetes. Hyperglycemia induces a large number of alt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 44 5 شماره
صفحات -
تاریخ انتشار 2007